[CONTRIBUTION FROM THE RESEARCH DIVISION, U. S. VITAMIN CORPORATION]

Aminoalkylamides and Oxazolidinediones¹

By Seymour L. Shapiro, Ira M. Rose² and Louis Freedman

RECEIVED DECEMBER 19, 1958

A series of α -hydroxyamides of the type I and the derived oxazolidinediones of the type II have been examined for central nervous system depressant effects. Many compounds showed significant activity. A new and convenient process for synthesis of oxazolidinediones of the type II in one step from the α -hydroxyester, the dialkylaminoalkylamine and diethyl carbonate is described.

In continuation of our studies in the search for central nervous system depressants, $^{3-5}$ this paper reports the synthesis and examination for pharmacological activity of aminoalkylamides (I), (Table I) and oxazolidinediones (II), (Table II). In these compounds R1 and R2 were retained as hydrogen and methyl, n was 3-4, while the secondary amino function, $-NR_3R_4$, was varied extensively.

$$\begin{array}{ccc} R_1 R_2 CCONH(CH_2)_n NR_3 R_4 \\ OH \\ I \end{array} \xrightarrow{\begin{array}{c} R_1 \\ R_2 \\ OH \\ O \end{array}} \begin{array}{c} R_1 \\ R_2 \\ O \\ O \\ II \end{array} \xrightarrow{\begin{array}{c} R_1 \\ N-(CH_2)_n NR_3 R_4 \end{array}$$

The rationale for compounds of this type as central nervous system depressants was based on the assumption that a large measure of the selectivity of the central nervous system response was associated with a dialkylaminoalkyl function.⁶ Variation of the alkyl chain of three carbon atoms (n=3) was indicated by optimal effects noted with such structures in the phenothiazine-type tranquillizers,³ and with four carbon atoms (n = 4) in newly reported simple analogs of reserpine.7.8 The selection of the simple α -hydroxy acids indicated an element of rigidity for amides of the type I as a result of hydrogen bonded structures⁹ as shown in III.

In turn, the known anticonvulsant effect of oxazolidinediones4,10 suggested exploration of compounds of the type II.¹¹

(1) Presented in part at the Medicinal Chemistry Division, American Chemical Society, Boston, Mass., April, 1959.
(2) Nopco Chemical Co., Harrison, N. J.

(3) S. L. Shapiro, H. Soloway and L. Freedman, J. Am. Pharm. Assoc., Sci. Ed., 46, 333 (1957).

(4) S. L. Shapiro, I. M. Rose, E. Roskin and L. Freedman, THIS JOURNAL, 80, 1648 (1958).

(5) S. L. Shapiro, K. Weinberg, T. Bazga and L. Freedman. ibid., 80, 3734 (1958).

(6) Recent work has shown tranquillizing effects with dimethylaminoethanol; C. C. Pfeiffer, et al., Science, 126, 610 (1957)

(7) G. Di Paco and C. S. Tauro, Farmaco (Pavia), 13, 64, 429 (1958).

(8) B. V. Rama Sastry and A. Lasslo, J. Org. Chem., 23, 1577 (1958).

(9) S. L. Shapiro, I. M. Rose and L. Freedman, THIS JOURNAL, 80, 6065 (1958).

(10) J. W. Clark-Lewis, Chem. Revs., 58, 63 (1958).

(11) It is of interest that a simple congener of II with n = 2.3-(diethvlaminoethyl)-5,5-dimethyl-1,3-oxazolidine-2,4-dione, has been

The noted retention of activity in a different series of bases³ which showed depression of central nervous system activity upon quaternization indicated similar examination of such compounds in this series as $I \cdot R_5 X$ and $II \cdot R_5 X$.

The synthesis of the α -hydroxyamides of type I was effected readily by reflux with an excess of the α -hydroxyester.^{9,12} In fifteen variants of $R_3R_4N(CH_2)_3$ - the lactamides give the best average yields (87%), followed by the glycolamides (79%)and the α -hydroxyamides (76%).

The oxazolidinediones of the type II were prepared by treatment of the N-substituted α -hydroxyamides with ethyl carbonate using sodium alkoxide catalysis in an extension of the method of Wallingford.¹³ In the course of the work, however, a far more useful development was exploited which permitted a one-step conversion of the amine, $R_3R_4N(CH_2)_nNH_2$ (IV), to the substituted oxazolidinedione II. This was achieved by reaction under sodium alkoxide catalysis of equivalent quantities of the amine IV and the α -hydroxyester V in diethyl carbonate (VI) as a solvent. The variety as well as sequence of reaction possibilities which may be involved are shown in Scheme I.

Further characterization of reaction mechanisms¹⁴ is being studied in greater detail in a wide variety of systems.¹⁵ Clearly, path A is a likely possibility since the diones II are prepared readily from the hydroxyamides I and diethyl carbonate. Path B involving reaction of the urethan VII with the α -hydroxyester is an alternate path for the preparation of diones II and has been demonstrated in other systems.¹⁴ Path C has been shown to give a 61% yield of compound 111 (Table II).

While sodium ethoxide was used as the catalyst in most instances, sodium methoxide and benzyltrimethylammonium methoxide were also serviceable. In turn, aluminum isopropoxide and benzyltrimethylammonium hydroxide proved to be ineffective.

In the cyclization step to the diones II using the amides I, the average yield for 14 variants of $-N(CH_2)_3NR_3R_4$ for conversion to the diones where $R_1 = CH_3$, $R_2 = H$, was 80% as compared to an average of 68% for equivalent structures wherein $R_1 = R_2 = H$. The yield was greater for each

reported by M. A. Spielman and G. M. Everett, THIS JOURNAL, 70, 1021 (1948), and confirmed in our laboratories to be without significant pharmacological activity.

(12) (a) W. P. Ratchford, J. Org. Chem., 15, 326 (1950); (b) W. P. Ratchford and C. H. Fisher, ibid., 15, 317 (1950).

(13) V. H. Wallingford, M. A. Thorpe and R. W. Stoughton, THIS JOURNAL, 67, 522 (1945).

(14) S. L. Shapiro, I. M. Rose and L. Freedman, in preparation.

(15) For a somewhat related study, see N. A. Leister and D. S. Tarkell, J. Org. Chem., 23, 1152 (1958).

$Table \ I$ Aminoalkyl- α -hydroxyamides $R_1R_2CCONH(CH_2)_nNR_3R_4\cdot R_5X$

о́н

									-Anal	V-SACC		
No.	R3	R	R _b X	B.p. (mm.) ^{<i>a</i>} or <i>Y</i> m.p., ^{<i>a.d</i>} °C.	7ield, %	b Formula	Carb Caled.	on, % Found	Hydro Caled.	gen, % Found	Nitrog Caled.	en. % Found
				$R_1 = H, R_2$	= H	n = 3						
1	CH	CH		128 (0, 05)	72	C.H.N.O.	52.5	52 9	10 1	10.3		
2	CH-	CH	CHA	$124 - 125^{da}$	78	C.H. IN.O.	31.8	31 0	63	6.3		
3	C.H	C.H.	CII31	140(0,1)	82	C.H. N.O.	57 4	57 4	10.7	10.5		
1		C ²¹¹⁶⁻		190(0.1) 194(190(0.07))	76	$C_{911201N_2O_2}$	57.4	57.4	10.7	10.5	14.0	14 77
	$(CH_3)_2$ CH-	сп <u>я</u> -		154-160 (0.07)	70	$C_9\Pi_{20}\Lambda_2O_2$	57.4	57.5	10.7	10.5	14.9	14.7
0	$n - C_4 H_9 - (O)$	$n - C_4 H_9 - $		155 (0.03)	70	$C_{13}H_{28}N_2O_2$	* 0 0		~ -		11.5	10.9
0	(C	H_{2}_{4}		151 (.03)	20	$C_9H_{18}N_2O_2$	58.0	57.9	9.7	9.8	15.0	15.3
- 7	-(C	$H_2)_4$	CH₃I	143144	80	$C_{10}H_{21}IN_2O_2$	36.6	36.6	6.5	5.9	8.5	9.0
8	$-(CH_2)_2$	$O(CH_2)_{2}$		170-178(0.1)	77	$C_9H_{18}N_2O_3$	53.4	53.3	9.0	8.8	13.9	13.9
9	C6H	H ₁₂ O*		170-172 (.08)	90	$C_{11}H_{22}N_2O_3$	57.4	57.2	9.6	9.6	12.2	12.1
10	$C_{6}H_{11}-f$	CH₃		170-180 (.07)	85	$\mathrm{C_{12}H_{24}N_2O_2}$	63.1	62.9	10.6	10.5	12.3	12.1
11	C ₆ H ₁₁ /	C_2H_6		172-180 (.05)	80	$C_{13}H_{26}N_2O_2$	64.4	64.8	10.8	10.8	11.6	11.7
12	C ₆ H ₅	CH3-		198-200 (.1)	78	$C_{12}H_{18}N_2O_2$	64.8	64.5	8.2	8.5	12.6	12.6
13	C ₆ H ₆	C_2H_6		195-198 (.07)	83	$C_{13}H_{20}N_{2}O_{2}$	66.1	66.2	8.5	8.5	11.9	11.9
14	CaHaCHa-	CH3		192 (.08)	83	C12H20NoO2					11.9	12.3
15	C.H.CH	(CH _•) _• CH		186189 (83	CuHa NoOo	68.2	68.3	9.2	93	10.6	10.8
16	C.Hur	(CH		203-205(1)	76	$C_{10}H_{24}N_{2}O_{2}$	00.2	00.0	0.2	0.0	10.0	10.0
17	C			200,200(.1)	01	$C_{151124132}O_{2}$	66 G	ee e	~ ~	7 0	10.0	11.0
17	-08	3118		224-220(.2)	01	$C_{13}\Pi_{18}\Pi_{2}O_{2}$	00.0	00.0	1.1	1.0	12.0	11.9
				$R_1 = \mathbf{H}, R_2 =$	= H,	n = 4						
18	CH	CH		142 - 149(0, 09)	70	C.H. N.O.					16 1	15.8
10	CH	CH	CHJ	107-108	90 0	C.H. IN.O.	34.9	34 0	67	6.0	8 0	87
19	СП3	СП3-	C LI De l	174-176	04	$C H D_{\pi} N O$	04.4	54.0	0.7	0.9	10.0	10.0
20	CH3		C4H6D12	1/4-1/0	84 00	$C_{20}\Pi_{42}D\Gamma_{2}\Lambda_{4}O_{4}$	50 4	50 5	11 0	11 0	10.0	10.0
21	C_2H_6	C_2H_5		148-154 (0.05)	83 01	$C_{10}H_{22}N_2O_2$	59.4	59.5	11.0	11.3		
22	(CH ₃) ₂ CH	(CH ₃) ₂ CH-		154 (.05)	61	$C_{12}H_{26}N_2O_2$	62.6	62.0	11.4	11.1		
23	$n-C_4H_9$	$n - C_4 H_9 - $		175 (.07)	78	$C_{14}H_{30}N_2O_2$					10.8	10.9
				$R_1 = CH_2, R_2$	= F	I. n = 3						
94	CU	сч		122 (0.07)	02	CH NO	55 1	54 7	10.4	10.2		
24	CH3-	CH3-	CTT T	122 (0.07)	90 07	$C_{8}\Pi_{18}N_{2}O_{2}$	00.1	04.7	10.4	10.5		
27	CH3	CH3-	CH ₃ I	124-125	85	$C_9H_{21}IN_2O_2$	34.2	34.3	6.7	6.6	~ ~	<u> </u>
28	CH3	СН3	$C_4H_7BrO_2'$	152	94	$C_{12}H_{25}BrN_2O_4$	42.2	42.4	7.4	7.1	8.2	8.3
29	CH₃	CH₃	C ₆ H ₅ CH ₂ Br	157	91	$C_{15}H_{25}BrN_2O_2$	52.2	52.1	7.3	7.6	8.1	7.8
30	CH₃	CH₃	C ₄ H ₆ Br ₂ •	158 - 159	83	$C_{20}H_{42}Br_2N_4O_4$	42.7	42.9	7.5	7.7		
31	C ₂ H ₆	C ₂ H ₆		110(0.02)	84	$C_{10}H_{22}N_2O_2$	59.4	59.5	11.0	10.8	13.9	14.2
32	(CH ₃) ₂ CH	CH3		112-115 (.05)	79	$C_{10}H_{22}N_2O_2$	59.4	58.9	11.0	11.0	13.9	13.9
33	n-C4H9-	<i>n</i> -C₄H₂		140145 (.03)	83	$C_{14}H_{30}N_2O_2$	65.1	65.1	11.7	11.7	10.8	11.0
34	(C	H ₂) ₄		134-144(.03)	88	$C_{10}H_{20}N_2O_2$					14.0	13.6
35	(CH ₂),	$O(CH_{0}) \rightarrow$		142 (.04)	84	C10H20N2O2					13.0	12.7
36	-(CH_)	O(CH_)	CHJ	145146 ^{da}	86	Cu Hai NaOa	36.9	37.2	6.5	64	7.8	7.9
27		U . O ^e	CIIJI	170 - 172 (0.08)	<u>an</u>	C.H.N.O.	57 4	57.9	0.6	0.1	12.2	19 1
01				164 170 (0.00)	01	$C_{11}11_{22}N_{2}O_{3}$	61.1	61.2 RA 9	10.0	10.7	12,2	10.0
38	$C_{\ell}\Pi_{11}$			104 - 170(.05)	91	$C_{13}\Pi_{26}N_2O_2$	04.4	04.4	10.8	10.7	10.0	12.0
39	C ₆ H ₁₁ -'	C ₂ H ₅ -		170(.04)	87	$C_{14}H_{28}N_2O_2$	00,0	65.5	11.0	10.7	10.9	10.7
40	C ₆ H ₅	CH3		176 (.04)	93	$C_{13}H_{20}N_2O_2$	66.1	65.9	8.5	8.3	11.9	11.8
41	C ₆ H ₆	C ₂ H ₅		182-184 (.04)	85	$C_{14}H_{22}N_2O_2$					11.2	11.2
42	C ₆ H ₅ CH ₂ -	CH3-		174-178 (.1)	88	$C_{14}H_{22}N_2O_2$	67.2	66.9	8.9	9.0	11.2	10.9
43	$C_{\ell}H_{\delta}CH_{2}$	(CH ₃) ₂ CH		168-171 (.03)	88	$C_{16}H_{26}N_2O_2$	69.0	69.3	9.4	9.3	10.1	10.0
44	C ₉ H ₁₁ <i>^a</i>	CH3-		182 (.02)	91	$C_{16}H_{26}N_2O_2$	69.0	69.1	9.4	9.6	10.1	9.7
45	C8	H ₈ ^h		208-210 (.08)	85	$C_{14}H_{20}N_2O_2$	67.7	67.3	8.1	8.1	11.3	11.3
					_ U							
				$\mathbf{K}_1 = \mathbf{C}\mathbf{\Pi}_3, \mathbf{K}_2$	= п	n = 4						
46	CH₃	CH3		124-131 (0.03)	74	$\mathrm{C_{9}H_{20}N_{2}O_{2}}$	57.4	57.0	10.7	10.6	14.9	14.7
47	C2H	C₂H₅		132-136 (.03)	87	$C_{11}H_{24}N_2O_2$					13.0	12.7
48	(CH ₃) ₂ CH	(CH ₃) ₂ CH		138-142 (.06)	86	$C_{13}H_{28}N_2O_2$	63.9	64.1	11.6	11.4		
49	(CH ₃) ₂ CH	(CH ₃) ₂ CH-	CH₃I	115-116	70	$C_{14}H_{13}IN_2O_2$	43.5	43.8	8.1	8.5	7.3	7.2
50	n-C4Ho-	$n-C_4H_8-$		156-160 (.08)	76	$C_{15}H_{32}N_2O_2$	66.1	65.7	11.8	11.7	10.3	9.9
	••				<u></u>	T 0						
				$\mathbf{K}_1 = \mathbf{C}\mathbf{H}_3, \mathbf{R}_2 =$	= CF	$n_{3}, n = 3$						
51	CH3-	CH3		115(0.06)	86	$\mathrm{C_9H_{20}N_2O_2}$					14.9	13.1
52	CH₃	CH3	CH₃I	170171 ^{da}	77	$C_{10}H_{23}IN_2O_2$	36.4	36.2	7.0	6.9		
53	CH3	CH₃	C ₆ H₅CH₂Cl	202-203	80	$\mathrm{C_{16}H_{27}ClN_2O_2}$	61.0	61.3	8.7	8.6	8.8	8.7
54	C2H5	C ₂ H ₅ -		128(0.1)	80	$C_{11}H_{24}N_2O_2$	61.1	60.9	11.2	11.1	13.0	12.7
55	(CH ₃) ₂ CH	CH3-		114-118 (.05)	73	$C_{11}H_{24}N_2O_2$	61.1	60.9	11.2	11.5	13.0	12.7
10.00				· · · · · · · · /	-				. —			

TABLE I (Continued)

							Analyses					
No.	R3	R_4	RsX	B.p. (mm.) ^{<i>a</i>} or Y m.p., ^{<i>a</i>,<i>d</i>} °C.	ield, 8 %	Formula	Carbo Caled.	on, % Found	Hydro Calcd.	gen, % Found	Nitroge Calcd.	en, % Found
56	n-C4H9	$n-C_4H_9$	(CH ₄) ₂ SO ₄	132-140 (.04)	51	$C_{16}H_{32}N_2O_2$	66.1	66.0	11.8	12.0	10.3	10.0
57	-(C]	H ₂) ₄	• • • •	114-124 (.03)	78	$C_{11}H_{22}N_2O_2$	61.7	61.7	10.4	9.9		
58	-(C)	$H_2)_4$	C ₄ H ₇ BrO ₂ ^{<i>i</i>}	156157		C ₁₅ H ₂₉ BrN ₂ O ₄	47.3	47.1	7.7	8.0		
59	$-(CH_2)_2$	$O(CH_2)_2$		145(0.04)	91	$C_{11}H_{22}N_2O_3$					12.2	12.2
60	$-(CH_2)_2$	$O(CH_2)_{2}$	MT ^k	7781 ^{db}	27	$C_{19}H_{32}N_2O_6S$	54.8	54.8	7.7	7.9	6.7	7.0
61 $-C_{\theta}H_{12}O_{-\theta}$			8183 ^{dd}	79	$C_{13}H_{26}N_2O_3$	60.4	60.4	10.1	9.9	10.8	10.7	
62	$C_{\ell}H_{11}-f$	CH3		5658	82	$C_{14}H_{28}N_2O_2$	65.6	65.4	11.0	10.7	10.9	10.7
63	$C_{6}H_{11}-f$	C₂H₅		144-154 (0.03)	72	$C_{15}H_{30}N_2O_2$	66.6	66.5	11.2	10.8		
64	C6H5	CH3		164-169 (.05)	72	$C_{14}H_{22}N_2O_2$	67.2	67.5	8.9	9.0		
65	C ₆ H₅	C₂H₅-		164-170 (.03)	79	$C_{16}H_{24}N_2O_2$	68.2	68.0	9.2	8.9		
66	C ₆ H ₆ CH ₂	CH₃		160 (.2)	80	$C_{15}H_{24}N_{2}O_{2}$	68.2	68.6	9.2	9.1		
68	C ₉ H ₁₁ ^g	CH3		174 (.03)	78	$C_{17}H_{28}N_2O_2$	69.8	69.3	9.6	9.5	9.6	9.7
69	-C ₈	H ₈ ^h		99-100 ^{db}	52	$C_{15}H_{22}N_{2}O_{2} \\$	68.7	68.9	8.5	8.6	10.7	10.8
				$R_1 = CH_3, R_2 =$	= CI	$H_3, n = 4$						
7 0	CH3-	CH3-		120(0.03)	75	$C_{10}H_{22}N_2O_2$	59.4	59.3	11.0	10.6	13.8	14.0
71	CH3-	CH3-	CH 3I	134-136	75	$C_{11}H_{26}IN_2O_2$	38.4	38.4	7.3	6.8	8.2	8.1
72	C ₂ H ₅	C ₂ H ₅	•	122-126 (0.06)	74	$C_{12}H_{26}N_2O_2$	62.6	62.6	11.4	11.3	12.2	11.8
73	(CH ₃) ₂ CH	(CH ₃) ₂ CH		58 ^{dc}	51	$C_{14}H_{30}N_2O_2$	65.1	65.0	11.7	11.8	10.8	10.9
74	(CH ₃) ₂ CH-	(CH ₃) ₂ CH	CH₂I	135137	77	$C_{16}H_{33}IN_2O_2$	45.0	45.3	8.3	8.1	7.0	7.1
75	n-C4H9-	n-C4H9		144-148 (0.08)	73	$\mathrm{C_{16}H_{34}N_2O_2}$	67.1	66.6	12.0	11.8	9.8	9.9

^a Boiling points are not corrected; melting points are not corrected and have been taken on a Fisher-Johns melting point block. ^b Yields are based on distilled product or recrystallized product, ^c Analyses by Weiler and Strauss, Oxford, Eng. ^d Solids were recrystallized from ethanol-ethyl acetate unless otherwise shown; ^{da} acetonitrile, ^{db} ethyl acetate, ^{dc} hexane, ^{dd} hexane-ethyl acetate. ^e R₃ and R₄ with attached N represent 4-(2.6-dimethylmorpholino). ^f C₆H₁₁- = cyclohexyl. ^e C₉H₁₁- = the "d"-form of C₆H₅CH₂CHCH₃-. ^h C₈H₅- with the attached N represents the 1-indolino derivative. ⁱ C₄H₆Br₂ = BrCH₂CHCH₂Br and the compound described in the bis-quaternary salt with this dihalide. ^j C₄H₇BrO₂ = BrCH₂COOC₂H₆. ^k MT = methyl tosylate.

variant of $-N(CH_2)_3NR_3R_4$ in the $R_1 = CH_3$, $R_2 = H$ category (except compounds 84 and 111 which were the same). The diones II wherein R_1 , $R_2 = CH_3$ were obtained in an average yield of 85%, with a noted greater yield over each individual variant in the $R_1 = CH_3$, $R_2 = H$ category (except compounds 135, 139, 140, 145).

These findings are of interest in that the best yields are obtained from the α -hydroxy-isobutyramides which have a tertiary hydroxyl group which must react for cyclization to occur. In this regard it has been demonstrated that transesterification of diethyl carbonate by ethyl α -hydroxyisobutyrate occurs under sodium ethoxide catalysis to give a 23% yield of the carbonate VIII, R₁, R₂ = CH₃. With the glycolamides the noted poorer yields might be ascribed to the presence of α -hydrogen atoms which could in-

duce complicating side reactions. In this analysis of the yields there did not appear to be any criticality associated with the variation of $-NR_3R_4$.

Pharmacology.—A number of the compounds showed a depressant effect on the central nervous system (Table III). Although clearcut relationships between structure and activity are not evident, inspection of the active structures reported in Table III shows several interesting relationships.

The variant $R_1R_2 = H$ showed the greatest number of active structures while $R_3R_4 =$ methyl gave the fewest. Considering the number of compounds examined, approximately equal effects were obtained with *n* as 3 or 4. Although eight of the active structures shown are quaternaries, there is no instance where the free base and its quaternary both show high order of activity. In the $-NR_3R_4$ variable the most consistent in yielding central nervous system depressant effects were the dibutylamino (compounds 5, 33, 101, 108), diethylamino (compounds 47, 79, 97,

105), dimethylamino (compounds 20, 27, 102, 149) and the morpholino (compounds 8, 85, 137) groups. Within this group of active structures, ten are hydroxyamides and twelve are oxazolidinediones. Compounds 33 and 108 were the only pair in which the amide I and the oxazolidinedione 1I are interrelated in terms of all variables.

The only noted regularity is within the group 11 wherein the congeners (compounds 102, 105, 108) show effect.

Further investigation is required to select the key structures in this series and at present the methiodide of N-dimethylaminopropyl lactamide (compound 27) is undergoing clinical trial.

TABLE H

No.	R 3	\mathbf{R}_4	R ₅ X	B.p. (mm.) ^{<i>a</i>} or m.p., ^{<i>a</i>,<i>d</i>} °C.	Yield, b	Formula	Carbo Caled.	on, % Found	Analy Hydrog Calcd.	ren, % Found	Nitroge Calcd.	en, % Found
				$R_1 = H, F$	$R_2 = H$	n = 3						
76	CH₃	CH3		80-83 (0.05)	66	C ₆ H ₁₄ N ₉ O ₃	51.6	51.6	76	73	15.1	15.0
77	CH3	CH3	CH3I	218-219	71	C ₀ H ₁₇ IN ₀ O ₂	32.9	33.2	5.2	4 9	8.5	8.9
78	C ₉ H ₆	C ₂ H ₅	°,	95 (0, 05)	70	CoHo NoOo	56 1	56.2	8.5	8.8	12 1	13 0
$\overline{79}$	C ₉ H ₅	C ₉ H ₅	CH₁I	150-151	92	CoHol NoO	37 1	37 4	5.0	6.0	7 0	7.0
80	(CH_)CH	СН	01131	100-102(0,05)	70	C.H. N.O.	56 1	56 1	0.9 0 E	0.0	1.9	19.0
81	n-C.H	n-C.H		136-138(-3)	61	C H N O	60.1	60,1 60 0	0.0	0.0	1.0.1	12.9
89	<i>n</i> -C4119	-C4119		100-100(.0)	04	$C_{14}\Pi_{26}N_2O_3$	02.2	04.3	9.1	9.9		
02 09	-(0)	12/4	CILI	110 (.05)	00	$C_{10}H_{16}N_2O_3$	00.0	- 07.2	7.6	8.0		0.0
00	$(\mathbf{C}\mathbf{I}\mathbf{I})$	(011)	CH ³¹	203-204	03	$C_{11}H_{19}IN_2O_3$	37.3	37.5	5.4	5.2	7.9	8.0
84	$-(CH_2)_2$	$O(CH_2)_2$		63-64**	61	$C_{10}H_{16}N_2O_4$	52.6	53.1	7.1	7.3	12.3	12.3
85	$-(CH_2)_2($	$O(CH_2)_{2}$ -	CH ³ I	230-231	72	$C_{11}H_{19}IN_2O_4$	35.7	35.9	5.2	5.0		
86	C ₆ H	. ₁₂ O*		130-133(0.2)	68	$C_{12}H_{20}N_2O_4$	56.2	56.4	7.9	8.1		
87	C ₆ H ₁₁ '	CH₃		146-150 (5)	56	$C_{13}H_{22}N_2O_3$	61.4	61.3	8.7	8.9	11.0	10.9
88	$C_{6}H_{11}-$	C₂H ₆		138-140 (.1)	76	$C_{14}H_{24}N_2O_3$	62.7	63.1	9.0	9.4	10.4	10.2
89	C ₆ H ₅	CH3		172-178 (1)	73	$\mathrm{C_{13}H_{16}N_2O_3}$	62.9	63.0	6.5	6.9	11.3	11.2
90	C ₆ H ₆	C_2H_6		188-190 (7)	66	$C_{14}H_{18}N_{2}O_{3}$	64.1	63.9	6.9	7.5	10.7	10.7
91	C ₆ H ₆ CH ₂	CH2-		170-179 (7)	65	C14H18N2O3	64.1	64.1	6.9	6.8	10.7	11.0
92	C ₆ H ₅ CH ₂	(CH ₃) ₂ CH		170-174(.2)	83	C16HaoNoOa	66 2	66.3	7 6	7 9	9.7	9.7
94	-C ₆	H ₈ ^h		182-184 (.4)	69	$C_{14}H_{16}N_2O_3$	64.6	64.6	6.2	6.3	10.8	10.6
				$R_1 = H, H$	$R_2 = H$	n = 4						
95	CH3-	CH3		104(0.08)	71	CuH1AN2O2	54.0	54.2	8.1	8.0	14.0	13.9
96	CH2-	CH3	CH ₃ I	188189	99	CtoHtoIN:02	35 1	35.2	5.6	6.0	10.9	10.7
97	C ₀ H ₅	C ₂ H ₅	0	114(0,1)	81	CuHe NoO	57.8	58.2	8.8	8.8	12.3	12.0
98	C.H	C.H	СНЛ	87-89	60	C.H.UN.O.	39.0	20 0	6.2	6.0	7.6	7 9
00	(CH.).CH.	(CH.)-CH.	C1131	120 (0. 2)	76	C H N O	60 G	00.0 61 1	0.0	0.4	1.0	1.0
100	(CH) CH-		CHI	196 (0.2)	05	$C_{13}I_{13}I_{14}I_{2}O_{3}$	40.0	40.0	9,4	9.0		
100	(CH3)2CII-	(CII3/2CII-	C1131	130-138	90 74	$C_{14}H_{27}I_{2}V_{3}$	44.Z 62.4	42.3	0.8	1,1	0.0	10.9
101	<i>n</i> -C4119	<i>n</i> -C411g=		138 (0.00)	74 D T	$C_{15}\Pi_{28}$, v_2O_3	05.4	03,4	9.9	9.9	9.9	10.2
				$\mathbf{R}_1 = \mathbf{C}\mathbf{\Pi}_3,$	$\kappa_2 = \Pi$	n = 3						
102	CH3	CH₃		76 (0.03)	86	$C_9H_{16}N_2O_3$	54.0	53.9	8.1	8.3	14.0	13.9
103	CH₃	CH₃	CH₃I	171 - 172	95	$C_{10}H_{19}IN_2O_3$	35.1	35.3	5.6	6.1	8.2	8.0
104	CH₃	CH₃	C₃H₅Br ^ℓ	190195	8 6	$C_{12}H_{21}BrN_2O_3$	44.9	44.8	6.6	6.7	8.7	8.8
105	C ₂ H ₅	C ₂ H ₃		87-100 (0.04)	78	$C_{11}H_{20}N_2O_3$	57.9	57.9	8.8	8.8	12.3	12.3
106	C ₂ H ₅	C_2H_5	CH₃I	129-130	62	$C_{12}H_{23}IN_2O_3$	38.9	39.0	6.3	6.2	7.6	7.7
107	(CH ₃) ₂ CH	CH₃		9092 (0.08)	81	$C_{11}H_{20}N_2O_3$	57.9	58.0	8.8	8.9		
108	$n \cdot C_4 H_9$	<i>n</i> -C₄H ₉		128 (0.2)	82	$C_{15}H_{28}N_2O_3$	63.4	63.1	9.9	9.8	9.9	9.8
109	-(CI	$(H_2)_4$		102 (.02)	79	C11H18N2O3	58.4	58.3	8.0	7.8		
110	(CI	H ₂) ₄	$CH_{3}I$	181-182	89	C10H01IN00	39.2	39.2	5.8	5.5		
111	-(CH ₀) ₀ ($O(CH_{a})$		115-120 (08)	57	CuHuNO	54 5	53 8	7.5	7.5	11.6	11 5
1114	$-(CH_{a})_{a}$	$O(CH_{0})$	HC1	218-219	61	$C_{\rm H}$ H $C_{\rm N}$	47 4	47.2	69	71	10 1	9.7
119	$-(CH_{2})_{2}$	$O(CH_{2})_{2}$	CHJ	210 217	5.1	C.H.INO	37 5	37 0	5 5	5 7	7.3	71
112	(CII2)2($\int (C \Pi \underline{v})_2$	CII3I	120(-02)	0- 1	$C_{12}I_{12}I_{12}I_{12}O_{1$	57.9	58 /	0.0 Q 9	0.1 Q 5	10 4	10 1
110	сц /	CH		120 (.00)	71	$C_{13}I1_{22}.V_{2}O_{4}$	69.7	69.0	0.2	0.0	10.4	10.1
114		CH3-		104-100(.1)	71	$C_{14}\Pi_{24}$. N ₂ O ₃	04.7	04.9	9.0	9.0 0 F	0.0	0.0
110	C6H11-	$C_2 \Pi_5$		130-130(.05)	18	$C_{15}\Pi_{26}N_2O_3$	0.5.8	03.8	9.5	9.0	9.9	9.0
110	C6H5-	CH3-		158-164 (.1)	82	$C_{14}H_{18}N_2O_3$	04.1	04.2	0.9	7.1	10.7	10.8
117	C ₆ H ₅	C_2H_5		154-170 (.05)	80	$C_{15}H_{20}N_2O_3$	65.2	65.1	7.3	7.3	10.1	10.3
118	$C_6H_5CH_2$	CH₃		145-146 (.08)	84	$C_{15}H_{20}N_2O_3$	65.2	65.5	7.3	7.5	10.1	10.2
119	$C_6H_5CH_2$	(CH ₃) ₂ CH		156-158 (.1)	90	$C_{17}H_{24}N_2O_3$			_		9.2	9.1
120	$C_9H_{11}-g$	CH ₃		160-164 (.03)	91	$C_{17}H_{24}N_2O_3$	67.1	66.8	8.0	8.2		
121	-C ₈	H ₈ ^{<i>n</i>}		168 (.06)	77	$C_{15}H_{18}N_2O_3$	65.7	66.1	6.6	6.9	10.2	10.2
				$R_1 = CH_3,$	R = H	, n = 4		- 6			10 ·	
122	CH3	CH3		93 (0.05)	69	$C_{10}H_{18}N_2O_3$	56.1	56.4	8.5	8.5	13.1	12.7
123	CH₃	CH3	CH₃I	235 - 236	95	$\mathrm{C}_{11}\mathrm{H}_{\mathtt{2}1}\mathrm{IN}_{2}\mathrm{O}_{3}$	37.1	37.4	5.9	6.1	7.9	7.8
124	C₂H₅	C_2H_5		100 (.04)	91	$C_{12}H_{22}N_2O_3$	59.5	59.1	9.2	9.1	11.6	12.0
125	(CH3)2CH	(CH ₃) ₂ CH		110-111 (.04)	89	$C_{14}H_{26}N_2O_3$	62.2	62.3	9.7	9.5		
126	<i>n</i> -C₄H ₉	<i>n</i> -C₄H ₉		135-137 (.05)	76	$C_{16}H_{30}N_2O_3$	64,4	64.0	10.1	9.8	9.4	9.1

TABLE II (Continued)

	Analyses ^c Analyses											
No.	Rı	R4	RsX	B.p. (mm.) ^{<i>a</i>} or m.p., ^{<i>a</i> d} °C.	Vield,b %	Formula	Carbo Caled.	n, % Found	Hydrog Calcd.	gen, % Found	Nitroge Caled.	:n, % Found
				$R_1 = CH_3, R_3$	= CH	$H_3, n = 3$						
127	CH3	CH₃		67-68 (0.03)	87	$C_{10}H_{18}N_2O_3$	56.1	56.2	8.5	8.7	13.0	12.8
128	CH₃	CH₃	CH₃I	233234	93	$\mathrm{C}_{11}\mathrm{H}_{21}\mathrm{IN}_{2}\mathrm{O}_{3}$	37.1	37.4	5.9	6.2	7.9	7.9
129	CH₃	CH₃	C₂H₅I	154155	82	$C_{12}H_{23}IN_2O_3$	38.9	38.8	6.3	5.9	7.6	7.6
130	C₂H₅-	C_2H_5		8286 (.03)	89	$C_{12}H_{22}N_2O_3$	59.5	59.9	9.2	9.4	11.6	11.9
131	C₂H₅	C ₂ H ₅	CH₃I	121-122	91	$C_{13}H_{25}IN_2O_3$	40.6	40.9	6.6	6.8	7.3	7.2
132	(CH ₃) ₂ CH	CH₃		88 (.05)	87	$C_{12}H_{22}N_2O_3$	59.5	59.6	9.2	9.1		
133	$n-C_4H_9$	<i>n</i> -C₄H ₉		116 (.05)	95	$C_{16}H_{30}N_2O_3$	64.4	64.4	10.1	10.1		
134	$n - C_4 H_9$	<i>n</i> -C ₄ H ₉	CH₃I	101-102	75	$C_{17}H_{33}IN_2O_3$	46.4	46.4	7.6	7.4	6.4	6.4
135	(CI	$(H_2)_4$		94 (.04)	74	$C_{12}H_{20}N_2O_3$	60.0	60.3	8.4	8.2	11.7	11.6
136	(CI	+(2H	CH₃I	123-125	83	$C_{13}H_{23}IN_2O_3$	40.9	41.0	6.1	6.3	7.3	6.9
137	$-(CH_2)_2O(CH_2)_2-$		127-128 (.2)	94	$C_{12}H_{20}N_2O_4$	56.2	56.2	7.9	8.0	10.9	10.7	
138	$-(CH_2)_2O(CH_2)_2-CH_3I$		200-201	76	$C_{13}H_{23}IN_2O_4$	39.2	39.5	5.8	5.9	7.0	7.0	
139	9 $-C_{6}H_{12}O^{-e}$		122-128 (.05)	83	$\mathrm{C}_{14}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{4}$	59.1	59.4	8.5	8.8	9.9	9.8	
140	$C_{6}H_{11}-f$	CH₃		49-51 ^{dc}	63	$C_{15}H_{26}N_2O_3$	63.8	64.1	9.3	9.3	9.9	9.8
141	C ₆ H ₁₁ ^f	C ₂ H ₅		130-132 (.04)	86	$\mathrm{C_{16}H_{28}N_2O_3}$	64.8	65.1	9.5	9.4	9.5	9.0
142	C₀H₅	CH₃		146-148 (.03)	92	$C_{15}H_{20}N_2O_3$	65.2	65.6	7.3	7.3	10.1	9.7
143	C₀H₅	C ₂ H ₅		156-157 (.06)	89	$C_{16}H_{22}N_2O_3$	66.2	66.4	7.6	8.1	9.7	9.7
144	C ₆ H₅CH₂	CH₃		140 (.05)	84	$C_{16}H_{22}N_2O_8$	66.2	66.3	7.6	7.8	9.7	9.8
145	C ₆ H ₅ CH ₂	(CH ₃) ₂ CH		146-148 (.03)	81	$C_{18}H_{26}N_2O_3$	67.9	68.3	8.2	8.3	8.8	8.9
146	C ₉ H ₁₁	CH₃		156-158 (.01)	78	$C_{18}H_{26}N_2O_3$	67.9	67.9	8.2	8.5		
147	C8	H ₈ ^h		164 (.03)	91	$\mathrm{C_{16}H_{20}N_2O_3}$	65.2	65.6	7.0	7.0	10.1	9.7
				$R_1 = CH_3, R_3$	$_2 = CH$	$H_{3}, n = 4$						
148	CH3	CH3		82 (0.03)	77	$C_{11}H_{20}N_2O_3$	57.9	58.1	8.8	8.9		
149	CH3-	CH₃	CH₃I	237238	96	$\mathrm{C}_{12}\mathrm{H}_{34}\mathrm{IN}_{2}\mathrm{O}_{3}$	38.9	39.0	6.3	6.4	7.6	8.0
150	CH3	CH3	$C_7H_6Cl_2^m$	$176 - 181^{db}$	78	$C_{18}H_{26}Cl_2N_2O_3$					7.2	7.1
151	C_2H_6	C ₂ H ₅		93-96 (0.03)	89	$C_{13}H_{24}N_2O_3$	60.9	61.1	9.4	9.3	10.9	10.9
152	(CH ₃) ₂ CH	(CH ₃) ₂ CH		106 (.03)	84	$\mathrm{C_{15}H_{28}N_2O_3}$	63.4	63.5	9.9	10.1	9.9	9.7
153	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-	CH3I	156158	92	$C_{16}H_{31}IN_2O_3$	45.1	45.2	7.3	7.6	7.6	7.0
Footnotes are the same as for Table I.			${}^{l}C_{3}H_{5}Br = ally$	l brom	ide. ^m C7H6Cl2	= <i>p</i> -c	hlorobe	enzyl cl	nloride.			

TABLE III CENTRAL NERVOUS SYSTEM DEPRESSANT EFFECT

No.ª	LD _{min} b	DMA°,d %	No.ª	LD_{min}^{a}	DMA¢,d %
5	1000	13*	83	150	41
7	200	30	85	>1000	24*
8	>1000	17*	86	400	38
15	>1000	26	94	500	24
17	500	60	97	>1000	27
20	>1000	21	101	750	51
27	>1000	27*	102	>1000	52*
33	400	56*	105	>1000	16*
47	>1000	40	108	250	15*
58	>1000	30	137	>1000	45*
79	500	39*	149	300	21

^a The numbers correspond to the compound numbers in Tables I and II. b LD_{min} is the minimum dose lethal to mice, subcutaneous, in mg./kg. c DMA = the percentage depression of motor activity as established in rats and the method has been described in ref. 4. d The dosage level used for the test was 20 mg./kg. subcutaneous, except those compounds marked with an asterisk which were evaluated at 10 mg./kg.

Experimental¹⁶

Reactants .--- Most of the dialkylaminoalkylamines were obtained from commercial sources. Some of these were prepared by cyanoethylation of the secondary amine R_3R_4 . NH, and reduction to the $R_3R_4N(CH_2)_3NH_2$. The compounds so prepared are described in Table IV.

(16) Data shown in the tables are not reproduced in the Experimental section.

General Procedure for α -Hydroxyamides of Table I.—A solution of 0.2 mole of the amine R₃R₄(CH₂)_nNH₂ in 30 ml. of the α -hydroxyester (ethyl glycolate, ethyl lactate or ethyl α -hydroxyisobutyrate) was heated under reflux over five hours while removing the formed ethanol during the course of the reaction. The excess ester was removed and the residue distilled to yield the product I. General Procedure for Oxazolidinediones of Table II

(from α -Hydroxyamides via Path A, Scheme I).—A solution of 0.1 mole of the α -hydroxyamide (Table I) in 50 ml. of diethyl carbonate was treated with a charge of catalyst (0.2 g, of sodium dissolved in 4 ml. of ethanol) and the reaction mixture heated under reflux for 1 hour. The formed alcohol (quantitative) was removed by distillation. The reaction mixture was filtered, the excess diethyl carbonate removed

mixture was filtered, the excess diethyl carbonate removed and the residue distilled to yield the product II. General Procedure for Ozazolidinediones of Table II (from Amines Directly).—A solution of 0.05 mole of the amine $R_3R_4N(CH_2)_nNH_2$ and 0.05 mole of the α -hydroxy-ester in 25 ml. of diethyl carbonate was treated with a charge of catalyst (0.2 g. of sodium in 4 ml. of ethanol) and the reaction mixture heated under reflux for 1 hour. The formed ethanol was removed by distillation. The re-action mixture was filtered the excess diethyl carbonate action mixture was filtered, the excess diethyl carbonate removed and the product distilled.

The yields of oxazolidinediones II obtained directly from the amine, compared to the over-all yield based on the amine when II is obtained from the α -hydroxyamide, are shown for

when it is obtained from the 2-hydroxyainide, are shown for a few typical cases.
Compound 137, 89% vs. 86% (from compound 59); compound 76, 63% vs. 48% (from compound 1); compound 108, 85% vs. 68% (from compound 33); compound 133, 83% vs. 48% (from compound 56).
Quaternary salts of Tables I and II were prepared using an excess of the halide in refluxing ethanol or acetonitrile.
Ethyl. a. (Carbethovyrus) isobuttrata (Compound VIII).

Ethyl α -(Carbethoxyoxy)-isobutyrate (Compound VIII, R₁R₂ = CH₃).—A mixture of 13.2 g. (0.1 mole) of ethyl α -hydroxyisobutyrate and 25 ml. of diethyl carbonate under

	TABLE IV	
NITRILES AND	Amines $R_2R_4NCH_2CH_2-Z$; $Z = -CN = A$; $Z = -CH_2NH_2 =$	в

										Analyses ^c			
No."."	Ra	R4	°C.	., ^a	Vield, b %	Formula	Carb Caled.	on, % Found	Hydro Calcd.	gen, % Found	Nitrog Calcd.	en. % Found	
$1A^p$	(CH ₃) ₂ CH	CH3	86	8.0	81								
$1 \mathbf{B}^{q}$	(CH ₃) ₂ CH-	CH3	80	32.0	60								
$2A^{r}$	$C_{6}H_{11}-'$	CH3-	74	0.06	86								
$2B^{s}$	$C_{6}H_{11}-$	CH3-	6066	.06	68								
$3A^{t}$	$C_6H_{11}-f$	C ₂ H ₆	64 - 68	.04	61	$C_{11}H_{20}N_2$	73.3	73.2	11.2	11.1	15.5	15.7	
3B"	C ₆ H ₁₁ - ¹	C ₂ H ₆	72-80	. 13	71								
$4A^{v}$	C ₆ H ₅	CH3	110	.15	84	$C_{10}H_{12}N_2$	75.0	75.0	7.6	7.9	17.5	17.0	
$4B^w$	C₀H₀	CH3	94	.05	85								
$5A^{x}$	C ₆ H₅	C ₂ H ₆	105 - 122	.15	73	$C_{11}H_{14}N_2$	75.8	75.6	8.1	8.1	16.1	15.7	
$5\mathrm{B}$	C ₆ H ₅	C₂H₅	89	. 1	66	$C_{11}H_{18}\tilde{N_2}$	74.1	74.0	10.2	10.1	15.7	16.0	
6A ″	C ₆ H ₅ CH ₂	CH3	170	16.0	90								
6B	C ₆ H ₆ CH ₂	CH3	8081	0.1	66	$C_{11}H_{18}N_2$	74.1	73.8	10.2	10.4	15.7	15.6	
7A	C ₆ H ₅ CH ₂	(CH ₃) ₂ CH	98-100	. 03	79	$C_{1\$}H_{18}N_2$	77.2	77.1	9.0	9.3	13.9	13.7	
7B	C ₆ H ₅ CH ₂	(CH ₃) ₂ CH	76 - 82	. 1	87	$C_{13}H_{22}\mathrm{N}_2$					13.6	13.8	
8A	$C_9H_{11}-g$	CH₃	108115	. 1	85	$C_{13}H_{18}N_2$	77.2	76.9	9.0	9.1	13.9	14.3	
8B	$C_9H_{11}-g$	CH3	100 - 104	. 03	75	$C_{13}H_{22}N_2$	75.7	75.4	10.8	10.8	13.6	13.8	
9A ^z	C81	H ₈ ^h	102118	. 07	94	$C_{11}H_{12}\mathrm{N}_2$	76.7	76.4	7.0	6.9			
9B	-C ₈ I	H ₈ ^h	92-100	.07	83	$C_{11}H_{16}N_2$	75.0	74.8	9.2	9.3	15.9	15.8	

^{a-m} These superscripts have the same significance as indicated in Tables I and II. ^a An "A" after compound number signifies the nitrile. ^a "B" after compound number signifies the amine. ^p Reported, J. Corse, J. T. Bryant and H. A. Shoule, THIS JOURNAL, **68**, 1906 (1946), b.p. 94-96°. ^a Reported, footnote *p*, b.p. 72-74° (32 mm.). ^r Reported, footnote *p*, b.p. 125-148° (40 mm.). ^a Reported, footnote *p*, b.p. 122-124° (24 mm.). ^t Reported, footnote *p*, no data given. ^a Reported, footnote *p*, b.p. 135-141° (32 mm.). ^v Reported, French Patent 747,827 (1937) [*C. A.*, **32**, 4608 (1938)], b.p. 125-135° (2 mm.). ^w Reported, F. C. Whitmore, *et al.*, THIS JOURNAL, **66**, 729 (1944), b.p. 171-172° (40 mm.). ^a Reported, French Patent 742,358 (1933) [*C.A.*, **27**, 3483 (1933)], b.p. 175-177° (17 mm.). ^w Reported, J. A. King and F. H. Mc-Millan, THIS JOURNAL, **68**, 1468 (1946), b.p. 163-164° (14 mm.). ^a Reported, B. D. Astill and V. Boekelheide, *J. Org. Chem.*, **23**, 316 (1958), b.p. 129-133° (1 mm.), 87%.

reflux was treated successively with a charge of catalyst (0.2 g. of sodium in 4 ml, of ethanol), heated for 1 hour and the formed ethanol removed. The process was repeated three times. The reaction mixture was clarified by filtration, the volatile reactants removed and the product distilled to yield 5.6 g. at $108-109^{\circ}$ (0.02 mm.). Redistillation gave 4.74 g. of product boiling at $106-108^{\circ}$ (0.02 mm.), n^{20} D 1.4144.

Anal. Calcd. for $C_9H_{16}O_5;$ C, 52.9; H, 7.9. Found: C, 52.8; H, 7.8.

Ethyl α -(Carbethoxyoxy)-propionate (Compound VIII, R₁ = CH₃, R₂ = H) was prepared in 22% yield, b.p. 112-114° (18 mm.), n^{20} D 1.4114 following the procedure above. It was more conveniently prepared as follows.

It was more conveniently prepared as follows. A mixture of 6.0 g. (0.051 mole) of ethyl lactate in 50 ml. of pyridine was cooled and maintained at 0° during addition dropwise (0.5 hour with stirring) of 7 ml. of ethyl chlorocarbonate. After 2 hours at 20°, 50 ml. of water was added and the reaction mixture acidified with hydrochloric acid, then extracted with four 25-ml. portions of benzene. The benzene extract was dried (sodium sulfate), the benzene removed and the product, 7.4 g. (77%), distilled at 80° (4 mm.).¹⁷

5-Methyl-3-([4-morpholino]-propyl)-1,3-oxazolidine-2,4dione (Compound 111, Table II. Preparation via Path C, Scheme I).—A mixture of 4.82 g. (0.034 mole) of 3-(4-morpholino)-propylamine and 6.37 g. (0.034 mole) of ethyl α -(carbethoxyoxy)-propionate in 25 ml. of diethyl carbonate was allowed to react under conditions following the general procedure for compounds described for Table II above. The product, 5.0 g. (61%), was obtained, boiling at 124-126° (0.08 mm.), n^{∞} D 1.4851.

Acknowledgment.—The authors wish to thank Dr. G. Ungar and his staff for providing the pharmacological data herein presented, and E. Roskin and F. Testa for their technical assistance in the synthesis of some of the compounds.

Yonkers 1, N. Y.

(17) K. Freudenberg and M. Meister, Ann., 518, 86 (1935), report b.p. 93° (11 mm.).